تقويم بعض المطهرات الفطرية في مكافحة بعض الفطور المنقولة مـع التربة التي تؤثر في محصولي الحمص و العدس

(1) هسم وقاية النبات، كلية الزر اعة، جامعة حلب، سورية؛ (2) ايكاردا، ص.ب. 5466، حلب، سورية.

الملخص
 ععراية، شهلا، سهام كبابة ويسام بياعة. 2004. تتويم بعض المطهرات اللطرية في مكافحة بعض الفطور اللنقولة ميع التربة التي تؤثر في
 محصولي الحص والعدس. مجلة وقاية النبات العريبة. 22: 136-141.

الجريت تجارب مخبرية وضمن غرن النمو، لتقويم تأئير سبع من المطهرات الفطرية المستخدمة في معاملة البذور في مكافحة بعض النطور المنترلة مع الترّبة
اللتي تصيب محصولي الحمص والعدس. تم تسميم المستتبتات في النتجارب المخبرية بالمبيدات المختبرة بئلاثة تراكيز (الجرعة العادية، جرعة هضاعغة، وجرعة بثلالة أضعات)، ودرس تأئيرها في النمو الشعاعي للنطور المعزولة من عينات حمص وعدس مريضة (أربع عزلات لفطر ذبول الحمص (Fusarium oxysporum f.sp. ciceris (Padwick) Matuo \& Sato تُعنز الجذور الرطب Rhizoctonia solani Kühn إحداهعا من الحمص والأخرى من العدس، وعزلة من Rary (Lib.) de Bary (Sclerotinia sclerotiorum، وعزلة من Carboxin-thiram , Thiabendazole أظهرت النتائج أن أداء المبيدين .Rhizoctonia bataticola (Taub.) Butl الفطور/العزلات المستخدمة. وفي التجارب المنذذ ضسن غرن النمو، لدراسة تأثير تغليف بذرر الحمص والعس بالمطهرات بالتراكيز المختبرة في إنبات بذور
 وفيما يخص تأثير المطهرات الـختبرة في أطوال البادرات، سبب مبيد Fenpiclonil انخناضنأ في طول بادرات الحمص بنسبة 45\% عند كافة التزاكيز المستخدمة، في حين كانت النسبة 27\% مع مبيد Tolclofos methyl، و 21\% مع مبيد Carboxin-thiram. وني العدس، خفضت المبيدات Fenpiclonil، Diniconazole، Carboxin-thiram و Tolclofos methyl أطو ال بادرات العدس نتط.
كلمات منتاحية: مبيدات فطور، كاسيات بذور، عدس، حمص، ذبول تُعنن جذور، سورية.

Iprodione وآخرون (9) في فلوريدا، على كفاءة مبيد Kucharek كبح مرض البقعة الورقية وترحة الونَ الساق على اللبغ التي يحدثها الفطر ذاته. وفي دراسة أخرى، أظهرت مبيدات Carboxin ،Flutolanil و فعالية جيدة ضد مستتبتات نطر R. solani المعزولة من

نبات التبغ تُحت الظروف المخبرية (6).
وعند تسميم مستببت بطاطا دكسترز آجار بعدة مبيدات فطرية تستخدم في تطهير البذور (Metalaxyl ،Fludioxonil، Captan، وكار و (Thiram و Thiabendazole ،Pentachloronitrobenzene مختلفة، وجد أن الندو النصف قطري لفطر S. sclerotiorum كان أقل وعلى نحو معنوي في البيئة المعاملة بالمبيدات مقارنة مع الشاهد

وعند اختبار عشرة من معاملات البذور بعدد من المبيدات Thiabendazole + ،Fludioxonil ،Captan ،Metalaxyl) الفطرية ،Pentachloronitrobenzene ${ }^{\prime}$ Thiabendazole + Captan ،Thiram ،Captan + Pentachloronitrobenzene + Thiabendazole ،Thiram (Carboxin + Thiram , لمكافحة نشكل الأجسام الحجرية في بذور فول صويا إزاء الإصابة بفطر S. sclerotiorum تحت الظروف المخبرية، خفضت جميع المعاملات بالمطهرات الفطرية من نسبة الإصابة، باسشثاء المبيد Pentachloronitrobenzene. أما المبيدات أو

المهّدمة
يصاب محصو لا الحمص والعدس بمعقد من الفطور المنقولة مع التربة، ويعبّبر مرض الذبول الفيوزاريومي المتسبب عن فطر Fusarium oxysporum f.sp. ciceris (Padwick) Matuo \& Sato.
 الأكثر أهمية بالنسبة للعدس. كما يصاب المحصولان بمرض تُعفن
 Rhizoctonia ومرض التُعن الرطب للجذور المتسبب عن فطر Ba

.Rhizoctonia bataticola (Taub.) Butl. عن فطر وتشير الاراسات السابقةّ حول مكافحة هذه الفطور والحد من خطورتها، أن للمبيدين كاربوكسين-ثيرام (Vitavax) وكار الراربندازيم (Bavistin)، تأثّرِ أ مثبطأ لمرض التعفن الرطب للجذور على العدس المتسبب عن فطر (12) R. solani). وخفض المبيدان أوكسيد النحاس (Quinolate V4X) وتولكرفوس ميثيل (Rizolex) من شدة Rhizoctonia مرض التّعن الرطب للجذور العدس المتسبب عن فطر (2) ونر solani Benomyl و Benodanil التّي يحدثها الفطر R. solani في زيمبابوي (5). في حين أكد
, (F. oxysporum f. sp. lentis)، أو من المنطقة التاجية للساق (R. solani) (R. bataticolal S. sc̄lerotiorum) ، أو من الجذ غسل هذه الاجزاء بماء الصنبور/الحنفية مرات عدة، وتُعقيمها سطحياً بمحلول هيبوكلوريت الصوديوم تركيز 0.525\% لمدة 5 دقائق، وتركها لتجف في جو غرفة العزل. وتم فصل عزلات مسبب ذبول الحمص بناء للمنطقة الجغر افية التي جمعت منها العزلات [عفرين، تل حديا، جسر الشغور (سورية)، وتربل (لبنان)]. واستخدمت عزلة واحدة لذبول العدس، هي العزلة رقم 31، التّي سبق عزلها من نباتات عدس لصنف حساس ILL 4605 مزروعة في الحقل المريض بالمزرعة الرنيسية للمركز الدولي للبحوث الزر اعيةَ في المناطق الجافةّ-تل حديا، سورية. وكانت اختبارات المقدرة الإمراضيةّ المجراة على هذه العزلة قد أثبّبت أنها العزلة الأكثر شراسة (1). أما بالنسبة لفطر性 21 المعزولة من محطة بحوث S. sclerotiorum حماة (سورية) والتي أثبتت اختبارات المقدرة الإمر اضية لها في المختبر والدفيئة أنها تصيب كلا من العدس والحمص (3) ولما واستخدم عزلة واحدة بالنسبة لفطر R. bataticola تم الحصول عليها من نباتات حمص مصابة مجموعة من منطقة اعزاز (سورية). واستخدمت عزلتان من الفطر R. solani، تم الحصول على إحداهها من نباتات عدس مصابة من منطقّة تركمان بارح (سورية) وعلى الأخرى من نباتات حمص مريضة من تل حديا (حلب، سورية). تم تنقية الفطور المذكورة آنفأ باستخدام تتقنية البوغ الوحيد (أو طرف الهيفا بالنسبة للفطور الأخرى. وتكون (Fusarium spp.) اللقاح الفطري المستخدم في إعداء المستتبتات الغذائية المسمية بمطهرات البذور من ترص (بقطر 5 مم) مأخوذ من أطراف مستعمرة
 F. oxysporum f. sp. وبعمر 7 أيام (لعزلات (S. sclerotiorum . مزروعة على مستتبت بطاطا-دكستروز -آجار (ciceris \& lentis

،Thiabendazole + Thiram ،Carboxin + Thiram التوليفات Captan + Pentachloronitrobenzene + Thiabendazole و Fludioxonil نقد أعاقت النمو الميسليومي من البذور المصابة كليأ

Pentachloronitrobenzen استخدم على محصول العدس المبيد في معاملة البذار (11)؛ واعطت المبيدات Captan، Thiram أو Phaltanat فعالية جيدة عند استخدامها بتركيز 0.2\% (8)، وأمكن الحصول على هكافحة جيدة بالرش بكبريت الكلس 1.5\%
(4) \% أو

مو اد البحث وطر ائقّه

المبيدات المستخدمة
يبين الجدول 1 أسماء المبيدات المستخدمة لتسميم الأوساط الغذايثة في التجارب المخبرية، ولإكساء بذور الحمص والعدس في تجارب غرف النمو، وهي تمثل ثقريباً كافة طوائف مطهزات البذور
المتو افرة.

بذور الحمص والعدس
استخدمت في اختبارات المقلرة الإمراضية للفطور المختبرة، وفي الختبارات السمية النباتية لكاسيات البذور المختبرة بذور الحمص غاب 1 (ILC 482) وبذور العدس ادلب 2 (ILL 5882) .

العزلات الفطرية

تُم جمع عينات الحصص والعدس المريضة أثناء مسح حقلي للكمراض التّي تعتري هنين المحصولين في سورية خلال الموسم اللزراعي 1999/1998. وقد عزلت الفطور المسببة على مستتبت بطاطا-دكستروز-آجار (39 غ 1 (Difco-PDA/ليتر ماء) إما من F. oxysporum f.sp. ciceris) سوق النباتات المصابة

جدول 1. يبين أسماء المبيدات المستخدمة لتسميم الأوساط الغذائية في التجارب المخبرية، ولاكساء بنور العدس والحمص في تَجارب غرن النمو.
Table 1. Seed dressing chemicals used to poison culture media in in-vitro experiments and to coat lentil and chickpea seeds in growth chamber experiments.

Chemical name الاسم الكيمِيأّي	الاسسم الثشانيع common name	الاسم التجاري Trade name
1-(2,4-dichlorophenyl)-4,4-dimethyl-2-($1 \mathrm{H}-1,2,4$-triazol-1-yl)-pent-1-en-3-ol)	Diniconazole	Amco-8
4-(2,3-dichlorophenyl)-1H-pyrrole-3-carbonitrile	Fenpiclonil	Beret
N -trichloromethylthio-4-cyclohexene-1,2-dicarboximide.	Captan	Captan
3-chloro-4-[4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2yl]phenyl 4-chlorophenyl ether	Difenoconazole	Dividend
O-(2,6-Dichloro-4-methylphenyl) O,O-dimethyl phosphorothioate	Tolclofos-methyl	Rizolex
2-(4-thiazolyl)-1H-benzimidazole (CAS 9CI); 2-(4-thiazolyl)-benzimidazole	Thiabendazole	Tecto
5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide	Carboxin -thiram	Vitavax 200

(ILC 482). وتد استخدم كل مبيد على انغراد. رطبت البذور، بعد
 0.525\%، وغسلها بالماء المعقم والتَجنيف، بمعلق الايكسترين (كمادة
 غلنت بذور الحمص والعس بالمبيدات المخبَبرة بتراكيز 3، 6 و و 9 غ غ أو مل/كغ بذور بعد خلط البذور مع المبيا ضمن كيس بلاستيكي، وتمريك المحتويات بلطف لددة دقتقتّن لضمان تجانس توز ع المبيد على سطح البذور. ثُم جفنت البذور المام مروحة كهربائية، وتم استخدامها في اليوم الثالي.

تاثّير تغيف البذور في الإببات وأطوال البادرات الناتجة عنها زرعت بذور الحصص والعدس المغلفة بالمبيدات المختبرة في أتراص جيفي بعد ترطيب هذه الأخيرة، وبواقع بذرتين للقرص. ريتّ الالهراص في صواني معدنِية (20×30×5 سم)، ووضعت في غرين النهو (2020 س، 18 ساعة إضاءة و6 ساعات ظلام) لـدة عشرة أليام. استخدم 5 أتراص (مكرر) لكل تركيز من كل مبيد. وتم تسجيل البيانات الخاصة بابنبات البذور وأطوال البادرات الناتجة عنها.

تصصيم التجارب والتحليل الإحصائي المستخدم

 تصميم القطع تحت المنثشة، حيث اعتبرت المبيدات التطع الرئيسة، والتراكيز القطع الثانوية، والعزلات الفطرية التطع تحت الثانوية. واستخدم تصميم القطع المنشقة في تجربة تأثير تغليف البذور في الإنبات، حيث شكلت المبيدات التطع الرئيسة وتركيزاتها القطع الثانوية، ألا في تجربة اختبار المقارة الإمراضية لعزلات مسبب الالبول للحمص، نتد استخذم تصميمِ التطع كاملة العشّو انيّة. Genstat for) تم تحليل كافة التجارب باستخدام برنامج حاسوبي (window, $5^{\text {th }}$ edition نرق معنوي عند مستوى احتمال 5\%.

النتائج و المناقشة
 اختبار القارة الإمراضية

F. oxysporum تم الحصول على عزلات مسبب ذبول الحصص مf. sp ciceris
 وباثيةً وشُديدة في مناطق عفرين واعزاز (محافظة حلب)، وجسر
 حصص مريضة مجموعة من محطة تربل (لبنان) التّي يستخمها المركز لتتينيذ التجارب خارج جموسم النمو . بمنى أن اختيار العزلات
 للمستعمرات. وتد آحثّت كافة العز لات المختبرة مونتأَ بلادرات الحمص في الأنابيب خلال فترة تراوحت ما بين 30-40 يومأ بعد الإعاء. ولم

F. oxysporum f. sp. ciceris اختبار القدرة الإمراضية لعزلات الفطر

 صلب (6 غ آجار/ل) في الاختبار (7). نقلت بادرات حمص بعمر أسبرع من صنف غاب 1 (ILC 482) إلى الانابيب بواتع بادرة/أنبوب،

 الانابابِب في جو المخبَر (2 2 ± 18 س) لددة 40 يومأ مع مر القَتها دوريان

 نتائج اختبارات المتارة الإمراضية للفطور الأخرى من دراسات سابقة
أجريت ني المخبّبر ذاته (1، 3).

تحضير العستبنتات المسـة

تم إضانة المطهرات المستخدمة المذكورة في جيول 1 كل كلى على اننراد إلى مستّبت بطاطا-دكستروز-آجار معقم بعد تبريده إلى درجة
 الجرعة التّي توصي بها الشركة المصنعة، 6 غ غ أو مل/ليتر (تبعأ اللمبيد) وهي الجرعة الهضاعنة، و 9 غ غ أو مل/بيتر وهي ثلاثنة أضعاف الجرعة التي نوصي بها الشركة المصنعة)، واستخليمت الجرعات المضاعفة ألساسأ على أمل أنها ستؤمن حماية للألبات لفترة أطول شريطة عدم تاثثيرها في إبنات البذور أو نمو الثبات.

إلقاح الأطباق بالفطور ودراسة تأئر المطهرات الفطرية في نموها

 دكستروز-آجار مسم بالمطهرات الفطرية وفقّ التراكيز المستخدمة لكل مطهر، وذلك بوضع ترص (5 م م) لكر بل من العزلات/الفطور المختبرة، في مركز كل من الاططباق الخسة للمعاملة الواحدة. وقد اعثبر كل طبق بمثابة مكرر واحد. وتركت 5 الطباق من المستّبت ذاتهـ غير المسم في معالطة الشاهاهد للمقارنة. ورضعت الاطباق على طاو لات خشبية في المختبر (درجة الحرارة 27 2 2 س) لنترة المتّت
 دوريأ خلال هذه الفترة. وتد تم تصنيف نعالية المبيدات تبعأ للسلم الآتي: 1= تطر المستعرة أتّل من 1 سم (تثبيط)؛ 2= تطر المستّعرة أعلى من 1 وأتلّ من 3 سم (اللبيد ناعل)؛ 3= تطر المستعّعرة أعلى من 3 سم وأتل من 5 سم (المبيد متوسط الفعالية)؛ 4= تطر المستعمرة أعلى من 5 سم وألّل من 7 سم (المبيد ضيف الفعالية)؛ 5= تطر المستعرة أعىى من 7 سم (المبيد غير فاعل).

تغليف البذور باليطهرات الفطرية

استخذت المبيدات ذاتها المذكورة في الجدول 1 لتُطهير بذور العدس صنف ادلب 1 (ILL 5882) والحمص صنف غاب 1

العدس F. oxysporum f. sp lentis وعزلتي R. bataticola , S. sclerotïorum إزاء عزلتّي R. solani. وعليه يمكن استخدامه في تحضير وسط انتخابي للفطر الأخير . R. bataticola .S. sclerotiorum ويلاحظ أن فاعلية هذا المبيد مشابهة لفاعلية مبيد Tolcolofos methyl، وبالتالي يمكن التوصية باستخدامه في الحقول المريضة المستخدمة لغربلة السلالات إزاء أنواع F. oxysporum كونه لا يوثر فيها وبخاصة عند تلوث هذه الحقول بأنواع .Rhizoctonia spp. R. bataticola أيضأ إزاء عزلتي R. solani ومتوسط الفعالية إزاء كافة عز لات
 Thiabendazole , Carboxin-thiram وبخاصة عندما يكون اللقاح المعدي في الحقل ضعيفأ.

تأثير مطهرات الفطور في نمو بذور الحمص والعلس وأطوال بادراتها لم تؤثر أي من مطهرات الفطور المستخدمة، وفي التراكيز الثلاخثة المستخدمة، في نسبة إنبات بذور الحمص و العدس التّي تراوحت ما بين 95-100\% وبدون فروقات معنوية فيما بينها. لوحظ فروقات معنوية فيما بين المبيدات المختبرة إزاء تأثير ها في طول نباتات الحمص (جدول 3) حيث سبب المبيد Fenpiclonil انخفاضأ في طول البادرات بنسبة 45\% عند كافة التراكيز، وكانت ن27 Tolcolofos methyl نسبة الانخفاض في الطول مع المبيد و المبيد 21 Carboxin-thiram في حين لم تؤثر المبيدات المتبقية في طول بادرات الحمص على نحو معنوي. ولوحظت الظاهرة ذاتها عند العدس (جدول 3) حيث أدى استخدام
 البادرات بنسبة 38، 25، 31 و 28\% على التوالي. وكان الانخفاض مع المبيدات الأخرى غير معنوي. وتبين أن زيادة ترك تحدث تزايدأ في خفض طول بادر ات العدس حيث كان هذا الانخفاض 24\% عند التركيز 3 غ/كغ و28\% عند التركيز 6 غ/كغ و 43\% عند التركيز 9 غ/كغ. وبما أن الفروقات في كبح النمو الفطري بوساطة هذا هـا المبيد لم تكن معنوية، ونظرأ لتوافر هذا المبيد في الأسواق المحلئر المية وعدم نوافر مبيد تكتو فإننا ننصح باستخدامه لتطهير بذور الحمص
و العدس إزاء الفطور المنقولة مع الثربة.

شكر وتقّدير

تم تتفيذ هذا البحث بتمويل جزني هن ACIAR-استراليا
المشُروع CS1/2000/066.

تكن الفروقات بين العزلات في إحداث موت البادرات معنوية. أما اختبارات القدرة الإمر اضية للفطور الأخرى، نقد تم التأكد منها من دراسات سابقة (1، 3) نفذت في المختبر ذاته. ويعزى السببب في استخدام عزلتين من الفطر R. solani إلى كونهما عزلتا من عائلين مختلفن (الحمص والعدس) وكان ثشة اختلافات بينهما في الصفات المظهرية وسر عة النمو .

تأثير مطهزات البذور المختبرة في النمو الشعاعي للفطور المستخدمة
تحت ظروف المختبر
اختلفت سرعة نمو الفطور/العزلات المختبرة على المستتبت
الغذائي غير المسمم وكان أسر عها نموأ عزلتي R. solani اللتان غطت نمو اتهما طبق البتري في معاملة الثاهد (قَطر المستعمرة 9 سم) في أقل كن 4 أيام، تلاهها عزلة فطر R. bataticola وعزلة فطر اللتان غطت نمواتهها طبق البتري في معاملة الشّاهد S. sclerotiorum في أقل من 7 أِيام، في حين استغروّت العزلات الأربعة لفطر F. oxysporum f. sp lentis وعقل F. oxysporum f. sp ciceris من 14 يومأ لتنطية كامل سطح الطبق البتري. كانت الفروقات ما بين التر اكيز المستخدمة لكل مبيد في كبح نمو الفطور /العز لات المستخدمة غير معنوية ، لذا فان البيانات الخاصة فيها
لم ترد في جدول التُحليل الإحصاني. ويبين الجدول 2 تاثثير المبيدات المستخدمة في متوسط النمو الشعاعي للفطور /العز لات المستخدمة ونستتتج منه التّالي: المبيدات المختبرة كونهما أنرا في كافة الفطور/العزلات المستخدمة، ويمكن التوصيةً باستخدامهما لتطهير البنور ضد

مدى واسع من الفطور المنقولة مع التربة. R. solani Tolocolofos methyl في عزلتي الفطر - أثر مبيد من ال وكان متوسط الفعالية إزاء عزلة R. bataticola في حين كان F. oxysporum f. sp. ciceris عديم التاثير في عزلات الفطر وفي عزلة F. oxysporum f. sp. lentis وعزلة و. S. sclerotiorum البذور إزاء أنواع .Rhizoctonia spp فقط. ويتسم هذا المبيد بإمكانية استخدامه في الحقول المريضنة المستخدمة لغربلة السلالات إزاء أنواع F. oxysporum كونه لا يؤثر فيها

وبخاصة عند تلوث هذه الحقول بأنواع .Rhizoctonia spp. Fusarium spp. الفعالية إزاء عزلة R. bataticola وعزلات وعزلة S. sclerotiorum، ويمكن استخدامه بالتالي كبديل لمبيدي Thiabendazole و Carboxin-thiram وبخاصة عندما يكون اللقاح المعدي في الحقل ضعيفاً. كان مبيد Difenoconazole متوسط الفعالية إزاء عزلات وفاعلذ إزاء عزلة ذبول , oxysporum f. sp ciceris
جدول 2. تاثيّير المبيدات المختبرة في النمو الشعاعي للفطور / العز لات المستخدمة.

Table 2. Effect of chemicals tested on the radial growth of fungi.

Control الشاهـ Col	المبيدات							الفطور Fungi
	Vitavax	Tecto	Rizolex	Dividend	Captan	Beret	Amco-8	
8.7	1.0	0.0	8.5	4.7	3.0	8.0	4.4	Fusarium oxysporum f.sp. ciceris عزلة عنرين (Afrine isolate)
9.0	0.9	0.0	9.0	3.5	4.1	8.5	3.7	Fusarium oxysporum f.sp. ciceris (Sick Plot at Tel-Hadya) عزلة لـ حديا
9.0	0.0	0.0	9.0	4.2	3.9	8.0	5.3	Fusarium oxysporum f.sp. ciceris عزلة لبنان (Lebanon isolate)
9.0	1.2	0.0	8.9	4.3	4.4	8.2	4.4	Fusarium oxysporum f.sp. ciceris (Jisr El-Shoghor عزلة جسر الششغور isolate)
9.0	0.0	0.0	9.0	2.5	4.8	6.4	2.6	Fusarium oxysporum f.sp lentis (Isolate No. 31) 31 عزلة رقم
9.0	2.8	0.0	9.0	2.3	4.0	8.5	4.2	Sclerotinia sclerotiorum عزلة رتم 21 (Isolate No. 21)
9.0	0.0	0.0	0.0	9.0	9.0	0.6	2.5	Rhizoctonia solani عزلة العدس (Lentil isolate)
9.0	0.0	0.0	0.0	9.0	9.0	0.0	2.9	Rhizoctonia solani عزلة الحصص (Chickpea isolate)
9.0	0.0	1.5	4.2	1.1	4.1	1.7	0.0	Rhizoctonia bataticola -

LSD at $\mathrm{P}=0.05$ within same fungicide $=0.52$, and between fungicides $=0.53$.

جدول 3. تأثير تغليف بذور العدس والحمص بالمطهرات المختبرة على اطوال البادرات بالسنتيمترات.
Table 3. Effect of seed-coating with fungicides on lentil and chickpea -seedling length $/ \mathrm{cm}$.

الشاهـ Control	Fungicides العبيدات							المحصول Crop
	Vitavax	Tecto	Rizolex	Dividend	Captan	Beret	Amco-8	
5.17 a	3.74 b	4.60 a	3.58 b	4.86 a	4.58 a	3.85 b	3.20 b	عسس
15.22 a	10.36 b	13.80 a	10.50 b	13.72 a	14.03 a	7.83 c	12.82 a	حمص Chickpea
اقَل فرق معنوي عند مستوى احتمال 5\% لمحصول العدس - 1.136 ولمحصول الحمص = 2.413. at $\mathrm{P}=0.05$ for lentil $=1.136$ and for chickpea $=2.413$.								

Values followed by the same letter (horiz-ontally) are not significantly different at $\mathrm{P}=0.05$

Abstract

Amaraya, S., S. Kabbabeh and B. Bayaa. 2004. Evaluation of some seed dressing fungicides to control soil-borne fungi affecting chickpea and lentil. Arab J. Pl. Prot. 22: 136-141.

Laboratory and growth chamber experiments were conducted to evaluate the effect of 7 seed-dressing fungicides, on some soil-borne fungi, affecting chickpea and lentil. In lab experiments, culture media were poisoned with the fungicides tested in three concentration (normal, double, and three- fold dose), and their effect on the radial growth of fungi isolated from chickpea and lentil diseased samples was tested (4 isolates of chickpea wilt, Fusarium oxysporum f.sp. ciceris, one isolate of lentil wilt, Fusarium oxysporum f. sp. lentis, 2 isolates of wet root rot, Rhizoctonia solani one from chickpea and one from lentil, one isolate of Sclerotinia sclerotiorum, and one isolate of R. bataticola). Results revealed that Thiabendazole and Carboxin-thiram were the best because they reduced the radial growth of all fungi studied. Growth chamber experiments, to study the effect of fungicides tested on germination of chickpea and lentil seeds and length of seedlings, revealed that fungicides used had no effect on seed germination which varied between $95-100 \%$. All concentration of Fenpiclonil used reduced the chickpea seedling length by 45%, whereas the reduction rate was 27% for Tolcolofos methyl, and 21% for Carboxin-thiram. In lentil, Diniconazole, Fenpiclonil, Tolcolofos methyl, and Carboxin-thiram reduced the seedling length by $38 \%, 25 \%, 31 \%$, and 28% respectively. Increasing the concentration of Vitavax inversely affected lentil seedling length. Key words: Fungicides, Seed dressing, Lentil, Chickpea, Wilt/root rot, Syria. Corresponding author: B. Bayaa, ICARDA, P.O. Box 5466, Aleppo, Syria, e-mail: B.Bayaa@cgiar.org

1. Abbas, A. 1995. Variation in some cultural and physiological characters and host/pathogen interaction of Fusarium oxysporum f.sp. lentis and inheritance of resistance to lentil wilt in Syria. Ph.D. thesis, Faculty of Agriculture, University of Aleppo, Aleppo, Syria. 143 pp.
2. Abou-Zeid, N.M., A.A., EI-Wakil, L.M. El-Sherif and M.L. Amer. 1990. Studies on root-rot and wilt of lentil and their control. Agricultural Research Review, 68 (3): 471-479.
3. Akem, C. and S. Kabbabeh. 1999. Screening for resistance to Sclerotinia Stem Rot in Chickpea: A Simple Technique. Biological Sciences, 2 (2): 277-279.
4. Bandys, E. 1929. Phytopathological notes III. Ochrana Rostlin, 7 (6):118-128.
5. Cole, D.L. and J.S. Cole. 1978. Field control of sore shin (Rhizoctonia solani) of tobacco with benomyl and benodanil. Annals of Applied Biology, 90:187-193.
6. Csinos, A.S. and M.G. Stephenson. 1999. Evaluation of fungicides and tobacco cultivar resistance to Rhizoctonia solani incited target spot, damping off and sore shin. Crop Protection, 18: 373-377.
7. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method of growing plants without soil. California Agricultural Experimental Station.
8. Khare, M.N. 1981. Diseases of lentils. Pages 163-172. In: Lentils. C. Webb and G.Hawtin (Editors). ICARDA, CAB, U.K.
9. Kucharek, T.A., R. Trevola and A. Tyree. 1992. Suppression of foliar blight and sore shin of tobacco caused by Rhizoctonia solani with iprodion. Phytopathology, 82 (4): 499.
10. Mueller, D.S., G.L. Hartman and W.L. Pedersen. 1999. Development of sclerotia and apothecia of Sclerotinia sclerotiorum from infected soybean seed and its control by fungicide seed treatment. Plant Disease, 83: 1113-1115.
11. Salt, G.A. 1983. Root Diseases of Vicia faba L. Pages. 393-419. In: The Faba Bean (Vicia faba L.). P.D. Hebblethwait. Eds. Butterworths, London, UK.
12. Saxena, H.C. and A.N. Mukhopadhyay. 1987. Biological control of wilt complex in lentil. Indian Journal. Mycology and Plant Pathology, 17: 123
