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Abstract 
Al-Ruheili, A.M., A. Boluwade and A.M. Al-Subhi. 2021. Predicting Mango Sudden Decline Due to Ceratocystis fimbriata 

Under a Changing Climate. Arab Journal of Plant Protection, 39(3): 215-223. https://doi.org/10.22268/AJPP-039.3.215223  
Mango fruit trees are an important fruit crop due to their high value. Mango sudden decline (MSD) is a major disease that threatens 

mango trees in Oman and worldwide. The objective of this study was to identify those areas in northern Oman in which Ceratocystis fimbriata 

(a plant fungal pathogen causing MSD) may establish itself under various climate change scenarios. The MaxEnt model used in this study was 

based on data for the period 1970-2000 and then projected to future climate periods. This study modeled the future distribution of C. fimbriata 

for 2021–2040, 2041–2060, 2061–2080, and 2081–2100 climatic scenarios. Fifteen affected locations and seven bioclimatic variables were 

investigated in this study. The model showed values between 0.896 and 0.913 (habitat suitability) which represented a good model outcome. 

The jackknife test showed that the mean diurnal range in temperature, precipitation of the driest month, and elevation contributed to C. fimbriata 

distribution. From 2021 through 2040, a total area of 1,889 km2 was found to be highly suitable for C. fimbriata in Northern Oman. Compared 

with the 2021–2040 period, the poorly suitable area would increase in both 2041–2060 and 2081–2100 periods. The moderately suitable 

regions for C. fimbriata would decrease under all scenarios investigated. However, the total area of the suitable areas, with all scenarios, would 

increase, except during the 2041-2060 period. This research offers a tool to better manage and prevent the possible Ceratocystis blight (C. 

fimbriata) and bark beetle (Hypocryphalus mangiferae) invasions under future projected climatic scenarios. 

Keywords: Mango sudden decline (MSD), “Ceratocystis fimbriata”, bioclimatic variables, climate change, Sultanate of Oman, Maxent. 

 

Introduction1 
 

The agricultural sector is an important component of the 

global economy. For instance, 65% of jobs and earnings in 

Africa are agriculturally based (Pretty et al., 2011). 

Therefore, the loss of agricultural production resulting from 

pests and diseases is a major concern for every farmer and 

any agriculture-based economy. According to Godfray et al. 

(2010), the sustainability of the agricultural yield relies on 

the continuous management of pests and diseases to ensure 

profitable productivity.  The mango tree (Mangifera indica) 

is grown in many continents, including Asia, South America, 

and Africa, and has high economic value (Arauz, 2000). 

Mangoes are also one of the most significant perennial fruit 

crops in the Sultanate of Oman (hereafter: Oman). In 2004, 

in the Al Batinah agricultural region, orchards planted with 

mango reached around 2500 ha, with total fruit production 

estimated at 8600 t (Al-Adawi et al., 2006).  

However, in 1999, mango sudden decline (hereafter: 

MSD) appeared in Oman. Following the onset of this 

disease, more than 60% of mango trees were affected in 

northern Oman in the Al Batinah region (Al-Subhi et al., 

2006). MSD resulted in the loss of over 200,000 mango trees, 

which represented 13% of all the mango trees in the region 

(Al-Adawi et al., 2006). MSD is a fungal disease that attacks 

the mango tree’s vascular system and results in a quick 
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decline or sudden death. The disease becomes a serious 

threat to mango trees throughout the entire region. The major 

symptoms of MSD are trunk secretion and wilting and the 

browning of leaves on single branches. In one study, most of 

the affected trees died six months after symptoms appeared 

(Pereira et al., 2019). Different fungi have been reported to 

be associated with MSD. Pathogens such as Ceratocystis 

blight (Ceratocystis fimbriata, C. manginecans, C. 

omanensis, and Lasiodiplodia theobromae) are the fungi 

isolated from MSD mango trees and were most commonly 

found in Oman and Pakistan. The bark beetle 

(Hypocryphalus mangiferae) is the vector responsible for 

spreading the pathogens among mango trees (Al-Adawi et 

al., 2003). According to Al-Adawi et al. (2006), H. 

mangiferae played a significant role in the dispersal of the 

mango sudden decline pathogen. Many countries around the 

world, including Iran, Australia, Egypt, India, the USA, 

Brazil, and Korea, have associated MSD with the fungal 

pathogen Ceratocystis sp., resulting in the wilting and death 

of their mango trees (Saeed et al., 2017). Many other 

countries around the world reported similar effects of MSD. 

For example, Pakistan considered MSD as the most 

destructive disease for mango trees, and 10–28% of mango 

trees were reported in Punjab to be affected by the disease, 

resulting in heavy economic losses for mango producers 

(Hassan & Nazami, 2017).  

https://doi.org/10.22268/AJPP-039.3.215223
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The climatic variation appears to play a significant role 

in the distribution of both pests and diseases around the 

world. According to Rosenzweig et al. (2010), climate 

change has a huge impact on agricultural crops and insect 

populations in both natural ecosystems and agroecosystems. 

Some studies have assessed the impact of climate change on 

bioclimatic conditions and their role in increasing the 

geographical distribution of pests and diseases. For example, 

Biber-Freudenberger et al. (2016), conducted a study to 

model the pest distribution for tomato leafminer (Tuta 

absoluta), mango fruit fly (Ceratitis cosyra), and oriental 

fruit fly (Bactrocera) to estimate the extent and change of 

pest habitats across Africa under various future climate 

change scenarios. The authors concluded that there is slightly 

increasing habitat suitability for the three pests on the entire 

African continent. Climatic conditions also contribute to the 

distribution of the H. mangiferae (Rossetto & Ribeiro, 1990). 

H. mangiferae is the vector for MSD infection. The mango 

bark beetles have the capability to spread the fungal 

structures over long distances and may infect other parts of 

the plant and remain in the soil, which can result in the loss 

of an entire mango planted area. Once the mango trees show 

symptoms, then the beetle serves as a proxy for disease 

spread. There is no information available on the spatial 

distribution of mango in Oman. Therefore, this study 

provided a proxy of possible suitable habitat for mango and 

the disease as well. In other words, understanding these 

environmental factors is crucial for forecasting the disease 

distribution and its patterns in efforts to develop informed 

management practices. Various climate change scenarios 

and models are available for different anthropogenic CO2 

emission forecasts, and these help researchers generate 

projections for the distribution of certain diseases in 

anticipation of possible future outbreaks (Collins et al., 

2013).  Several species distribution studies have been 

conducted to model pest and disease habitat suitability under 

future climate change scenarios. For instance, the potential 

distribution of pests and diseases in Asia, North America, 

and several European countries has already been modeled 

(De Meyer et al., 2010; Solhjouy-Fard et al., 2013). 

However, fewer modeling approaches have been constructed 

for disease projection with a focus on Oman (da Silva 

Galdino et al., 2016).  There is, therefore, a need to assess 

the impact of climate change on pest and disease distribution 

in order to estimate the potential losses of agricultural 

products. Currently, the methods to control MSD involve 

using grafting methods in which an exotic scion is grafted on 

a local plant rootstock. This is because MSD (through H. 

mangiferae) is found more on local varieties than on the 

exotic grafted varieties (Al-Adawi et al., 2006). Because 

MSD issues in Oman have not yet been resolved and climate 

change is a fact, the impact of climate change on this mango 

disease needs to be assessed. This study aimed to project 

various climate change scenarios in the context of MSD 

disease and to assess the disease’s future distribution and 

patterns to help decision-makers develop informed 

management practices and assist in planning the further 

expansion of agricultural species and potential associated 

risks that may arise.  

This study used maximum entropy species distribution 

modeling (Maxent), which is based on correlative ecological 

niche models between species occurrences and 

environmental variables to generate maps of potential 

species distribution by fitting a probability distribution for 

species occurrence in a geographic area. The niche-based 

model is used to describe the ecological suitability of a space 

and to generate a geographic area of the predicted presence 

of the species that satisfies the fundamental niche conditions 

necessary for those species and their potential distribution 

(Phillips et al., 2006). Several studies have demonstrated the 

use of this model in predicting pest and disease distribution. 

For example, given future climate conditions scenarios, the 

forest in the interior of the western US is predicted to see a 

27% increase by 2050 of the mountain pine beetle 

(Evangelista et al., 2011). As climate change occurs, there is 

a need to predict the potential MSD distribution under 

different climate change scenarios in order to better select 

appropriate growing areas for future mango cultivation and 

production. Therefore, the primary objective of this study is 

to analyze the potential suitable areas for the establishment 

of C. fimbriata in northern Oman.  

 

Materials and Methods 
 

Study area 

Oman (Figure 1) is an arid country in the Arabian Peninsula 

with a population of almost 5 million as of 2019 (World 

Bank, 2020). The total land area is more than 309,500 km2 

(McDonnell, 2016). The country can be divided into three 

main land surface areas: coastal plains, deserts, and 

mountains (McDonnell, 2016). With 11 different 

administrative governorates (Figure 1), the country’s main 

agricultural area is located in the Al-Batinah, Musandam 

Peninsula, interior oases, high plateaus of the eastern region, 

and Dhofar region (Al-Adawi et al., 2003). According to Al-

Adawi et al. (2003), the climate is generally hot and humid 

and hot & dry in the coastal areas and hot and dry in the 

interior areas. According to McDonnell (2016), the average 

annual precipitation for the entire country, interior and 

mountainous & coastal areas is around 100 mm, 20 mm, and 

400 mm, for the three regions, respectively. This rain occurs 

during the winter months (November–April) in the north and 

interior regions of Oman, whereas there is a monsoon 

summer season (June–September) experienced in the 

southern (Dhofar) region of Oman (Al-Adawi et al., 2003). 

The average temperature in the northern, interior, and 

Salalah plain is in the range 20–28oC, 19–26oC and 20–27oC, 

in the three regions, respectively (MRMWR, 2008). 

Evaporation in the interior, Al-Batinah coast, and Salalah 

plain is estimated to be 3000 mm, 2100 mm, and 1700 mm, 

respectively (MRMWR, 2008). Due to the vast area of land 

dominated by mountains, the total area under agricultural 

production is limited. As of 2004, the cultivated land area 

was around 58,800 ha with annual and perennial crops 

around 12,700 ha and 46,000 ha, respectively (Al-Adawi et 

al., 2003). According to the Ministry of Agriculture and 

Fisheries (2014), approximately 7% of the total land area in 

Oman has soil that can support agriculture. Oman’s cropping 

system is mainly fruit trees including date palms, forage (i.e. 

alfalfa & Rhodes grass), and vegetable crops, which 
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constitute 45%, 30%, and 17% of the cultivated area, 

respectively.   
 

Pest species and presence records 

The disease incidence data caused by C. fimbriata was 

obtained from the literature (da Silva Galdino et al., 2016) 

related to a total of 15 unique affected locations in the 

northern part of Oman (Figure 1). The strength of Maxent is 

its ability to make predictions with small sample size as 

reported in the literature (Anderson & Gonzalez, 2011). The 

collected data points represent the locations of the mango 

trees (Figure 1) infected with MSD that showed symptoms, 

including branch death, wilting leaves, and bark 

discoloration (da Silva Galdino et al., 2016). The black 

outlined area shown in the right panel of Figure 1, is the area 

used for this study. 

 

 
 

Figure 1. Sultanate of Oman map showing the mango 

sudden decline (MSD) locations reported by da Silva 

Galdino et al. (2016). The black outlined polygon shown to 

the top right represents the study area.  

 
Environmental variables 

To determine the future distribution of MSD under different 

climate scenarios, the study used datasets of future climate 

from the WorldClim data portal 

(https://www.worldclim.org/data/index.html). The future 

bioclimatic data were obtained from WorldClim v2.1, which 

was downscaled using CMIP6 at 2.5 minutes (4.5 km) spatial 

resolution. The climatic data was subject to nine Global 

Climate Models (GCMs) and four Shared Socio‐Economic 

Pathways (SSP6-8.5) for the following periods: 1970-2000 

(current & training period), 2021–2040, 2041–2060, 2061–

2080, and 2081–2100 and were available in a Geotif raster 

format (Eyring et al., 2016). This paper used ssp585 and the 

climate conditions that were represented by 19 bioclimatic 

variables. The 19 bioclimatic variables were extracted from 

the Geotif using statistical software. After the 19 bioclimatic 

variables for the eight models (not shown) were extracted, 

the average of each bioclimatic variable was calculated and 

used as an input for the model. The environmental variables 

derived from the WorldClim repository have been widely 

used in the prediction of the potential distribution of species 

as they are influenced by the changes in temperature and 

precipitation. As a result, these variables contribute to the 

ecology of species, which helps in explaining the predicted 

future distribution of species resulting from climate change 

(Zhang et al., 2016).  

This study considered the use of 20 environmental 

variables. Eleven of these variables were derived from the 

monthly temperature, while eight were derived from the 

monthly precipitation and digital elevation model. The 

decision to include seven bioclimatic variables in this study 

was based on the earlier study conducted by da Silva Galdino 

et al. (2016) to model the distribution of MSD in Oman. For 

the current disease distribution (training datasets), 

bioclimatic variables in the WorldClim database (version 

1.4) included the information of 19 bioclimatic variables 

from 1970 until 2000. The highly correlated variables were 

removed at 0.8 and seven climatic variables were relevant to 

MSD distribution (Table 1). Accordingly, for the periods 

2021–2040, 2041–2060, 2061–2080, and 2081–2100, this 

study incorporated these seven bioclimatic variables: mean 

annual temperature (bio1; °C); precipitation of the coldest 

quarter (bio19; mm); seasonal precipitation (CV) (bio15); 

precipitation of the driest month (bio14; mm); elevation (m); 

precipitation of the wettest month (bio13; mm); and mean 

diurnal range in temperature (bio2; °C). However, bio15 and 

bio13 appear to make a nonexistent to minimum contribution 

regarding the future distribution of MSD. 

 

Model and analyses 

This study used Maxent v.3.3., which was obtained from the 

web portal of Princeton University at 

http://www.cs.princeton.edu/. The software can forecast the 

extent and map the possible species distribution based on 

maximum entropy or environmental variables. The model 

uses climatologic variables in combination with species’ 

locations to predict the species’ capability of establishing 

itself in new areas. Maxent has the capability in producing 

various suitability indices ranging between 0 for unsuitable 

areas and 1 for highly suitable areas. Maxent yields in two 

assessment models: the area under the receiving operating 

characteristic (ROC) curve (AUC) and jackknife testing 17]. 

This study utilized Maxent to forecast the future distribution 

of MSD because of Maxent’s ability to work with records of 

few locations at the same time (Pearson et al., 2007).  

Maxent uses AUC in assessing the model’s 

performance, which is considered an excellent index 

indicator for the model’s performance. At the same time, the 

ROC is used to assess the AUC model’s performance 

through thresholding (Prabhulinga, 2017). The assessment of 

the AUC model’s performance employs five categories: not 

suitable (0.5–0.6), low suitability (0.6–0.7), moderate 

suitability (0.7–0.8), suitabile (0.8-0.9), highly suitable (0.9–

1) (Swets, 1988). The AUC values closer to 1, represent the 

good performance of the model. Therefore, low values of 

AUC are considered unreliable and vice versa.  
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Table 1. Environmental variables considered for the C. fimbriata Niche model and the average percent contribution of 

environmental variables in the mango sudden decline best Maxent model.  

 

Period 

Scenarios 

Variables 

1970-2000 2021–2040 2041–2060 2061–2080 2081–2100 

% 

Cont.* PI* 

% 

Cont. PI 

% 

Cont. PI 

% 

Cont. PI 

% 

Cont. PI 

Mean annual temperature 

(biol; °C) 

0.5 7.4 0.7 14.7 2 26.7 2.2 37.8 4.3 51.7 

 Precipitation of coldest quarter 

(bio19; mm) 

5.2 27.7 0.7 1.3 13.1 1.1 0.1 0.2 0.2 0.1 

Precipitation seasonality (CV) 

(bio15) 

0.1 - - - - - - - - - 

Precipitation of driest month 

(bio14; mm) 

36.7 13.6 31.4 15.6 32 35.6 37.5 38.8 37.5 32.5 

Elevation 

(m) 

4.2 6.9 15.1 8.4 4.6 7.1 7.1 9.4 9.3 12.5 

Precipitation of wettest month 

(bio13; mm) 

0.1 0.1 - - 0.3 15 0.1 - 0.3 - 

Mean diurnal range in temperature 

(bio2; °C) 

53.3 44.3 52 59.9 48 14.4 53 13.7 48.5 3.1 

* % Cont.= % Contribution; PI= Permutation importance 

 
The jackknife test is used to assess the leading 

bioclimatic variables and map the possible distribution of C. 

fimbriata. The jackknife test is built-in to the software used 

to calculate the habitat suitability curves of each variable; it 

is also used to assess each climatic variable’s contributions 

to the habitat model (Li et al., 2016). More information on 

this model’s modeling approach can be found in Philips and 

Dudik (2008). 

 

Evaluation of the model performance 

Because the data was limited, this study used cross-

validation for 15 replications with a threshold at 10 

percentile training presence (Shcheglovitova & Anderson, 

2013). The following parameters such as auto-features and 

regularization multiplier used the default settings. The 

default parameter settings were used because they are 

effective and are suitable for a wide-range of species 

occurring data sets. 15 replicated runs were used to get the 

output of the average logistic. The output of the replication 

is used to estimate the likelihood of the presences indices per 

category between 0 (not likely to occur) and 1 (most likely 

to occur) (Phillips et al., 2006; Phillips & Dudík, 2008).  

AUC was used to estimate the goodness of fit under the 

ROC curve, where the highest value indicated the best 

performer. The jackknife, the percentage contribution, and 

the permutation importance were used to estimate the most 

important environmental variables governing MSD 

distribution. Response curves were generated in Maxent and 

were used to indicate the relationships between predicted 

probabilities of the presence of the disease with respect to the 

variations within each environmental variable. 

 

 

 

Results 
 

Bioclimatic variables contribution and Maxent 

performance 

C. fimbriata forecasting during the 2021–2040 climatic 

scenario was found to be AUC mean = 0.913. The outcomes 

of the model presented that some of the designated seven 

bioclimatic variables of C. fimbriata showed the distribution 

of MSD for the period 2021–2040 very well. Among the 

seven bioclimatic variables, three contributed significantly to 

the disease occurrence such as bio2 with 52% contribution, 

bio14 with 31.4% contribution, and elevation with 15.1% 

contribution. In contrast, the distribution of the bioclimatic 

variable of C. fimbriata for the period 2041–2060 was for 

bio2 with 48% contribution, bio14 with 32% contribution, 

and elevation with 4.6% contribution. The bioclimatic 

variables’ distribution of C. fimbriata for the period 2061–

2080 were for bio2 with 53% contribution, bio14 with 37.5% 

contribution, and elevation with 7.1% contribution. For the 

period 2081–2100, the bioclimatic variables’ contribution to 

MSD distribution were for bio2 with 48.5% contribution, 

bio14 with 37.5% contribution, in addition to elevation with 

9.3% contribution (Table 1).  

The jackknife test for the period 2021–2040 showed 

that bio2, bio13, bio14, and elevation were the main 

variables (Figure 2), and in terms of permutation the main 

variables were bio2 with 59.9%, bio14 at 15.6%, and 

elevation at 8.4% contribution. These figures demonstrate 

that temperature and precipitation play a significant role in 

forecasting the possible dispersal of C. fimbriata. Based on 

the species response curves acquired, C. fimbriata prefers a 

mean diurnal range in temperature, limited precipitation, and 

moderate elevation. 
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Figure 2. Jackknife test of environmental variable importance for C. fimbriata. Y-axis represent the seven environmental 

variables in ASCII raster format (bio1 = Annual Mean Temperature; bio2 = Mean Diurnal Range (Mean of monthly (max temp 

- min temp)); bio13 = Precipitation of Wettest Month; bio14 = Precipitation of Driest Month; bio15 = Precipitation Seasonality 

(Coefficient of Variation); bio19 = Precipitation of Coldest Quarter). 

 

 

The mean AUC values showed in Table 2 for C. 

fimbriata in the future periods (2041–2060, 2061–2018, and 

2081–2100) performed well, indicating trustworthy 

predictability, and the AUC values of 0.913, 0.896, and 

0.907, respectively, were considered high. The model 

outcome shows that the simulations can be used to analyze 

the impact of climate change on the distribution of C. 

fimbriata in Oman.  

 
Table 2. AUC values when modeling C. fimbriata 

distribution of various climate change scenarios for three 

future periods (2041–2060, 2061–2080, and 2081–2100; 15 

replicated runs). 

 

Period AUC mean AUC SD mean 

2041–2060 0.913 0.023 

2061–2080 0.896 0.002 

2081–2100 0.907 0.021 

 

 

Predicted current potential distribution 

Using ArcGIS 10.8, the map in Figure 3 shows the potential 

MSD spreading projection for C. fimbriata based on 

observed occurrences and the environmental variables 

projected by the Maxent model for 2021–2040.  

The coastal area in northern Oman showed high 

suitability for C. fimbriata disease distribution. The total area 

of suitable locations (including less suitable habitat, 

moderately suitable area, and highly suitable area) was 

64,393 km2. The highly suitable areas for C. fimbriata were 

primarily located along the coast in northern Oman with a 

presence probability > 0.6, which was only 5% of the total 

area for the training & histrorical period 1970–2000 (Figure 

3).  

 

 

 

Future climatic distribution scenarios 

The estimated future climate change distributions for 

C. fimbriata with various climate change projections for the 

periods of 2021-2040, 2041–2060, 2061–2080, and 2081–

2100 are presented in Figure 4. The results showed that there 

was an increase of 5% between the total number of suitable 

habitats in 2021–2040 and those predicted for 2081–2100 

(Figure 4). Compared with the 2021–2040 distribution, the 

total area of the moderately suitable regions for C. fimbriata 

under the three climatic scenarios for the periods 2021-2040, 

2041–2060, 2061–2080, and 2081–2100 would increase by 

1.44%, 0.52%, and 0.33% respectively. In contrast, the total 

area of the highly suitable habitats would increase by 1.7%, 

4.5%, 4.41%, and 5% respectively (Table 3). Under the 

scenarios for 2021-2040, 2041–2060, 2061–2080, and 2081–

2100, the areas of the less suitable regions would decrease 

by -1.97%, -5.95%, -4.93, and -3.09%, respectively, and the 

areas of the unsuitable regions would decrease by 16% 

(Table 3).  

 

 
 

Figure 3. Suitable climatic distribution of C. fimbriata in 

north Oman for the historical period 1970-2000. The MaxEnt 

model was trained with this historical period. The blue color 

(0.0–0.2) and red color (0.8–1.0) show the least and most 

suitable locations for C. fimbriata, respectively. 
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Table 3. Predicted suitable areas for C. fimbriata in future Climatic Conditions 
 

Scenarios 

 

Period 

Predicted area (km2) 

Rate increase/decrease (%) compared to  

2020-2040 

UH* PSH MSH SH HSH UH PSH MSH SH HSH 

1970-2000 (Historical & Training) 57822 1507 1850 1081 2133      

2021-2040 7916 287 172 175 167 -1% -0.95% 0.89% -0.33% 1.40% 

2041–2060 2422 49 36 12 0 -6.35% 0.40% 1.44% 1.20% 3.3 

2061–2080 2458 57 61 15 0 -5.07% 0.14% 0.52% 1.10% 3.31% 

2081–2100 2426 80 66 19 0 -3.84% -0.75% 0.33 0.95% 3.31% 

* UH= Unsuitable habitat (0-0.25), PSH= Poorly suitable habitat (0.25-0.40), MSH= Moderately suitable habitat (0.41-0.60), SH= Suitable 

habitat (0.61-0.80), HSH= Highly suitable habitat (0.81-1.0). 
 

 

Figure 5 shows the standard deviation (SD) associated 

with the climatic projections. The SD values quantify the 

uncertainty of the predictions from the models. It is clear 

from these figures that predictions of climate projections 

(farther into the future 2061-2080 and 2081-2100) have more 

slightly variability (high SD) in habitat suitability when 

compared with the immediate climatic projection periods 

(2021-2040 & 2041-2060). 

 

 
 

Figure 4. Potentially suitable climatic distribution of C. 

fimbriata under different climate change scenarios in north 

Oman for the future periods (a) 2021-2040 (b) 2041–2060, 

(c) 2061–2080, and (d) 2081–2100. The blue color (0.0–0.2) 

and red color (0.8–1.0) show the least and most suitable 

locations for C. fimbriata, respectively. 

 
Discussion 
 

This paper is considered as one of the pioneers in 

investigating C. fimbriata distribution in relation to climate 

change consequences in northern Oman using Maxent 

modeling. Maxent is widely used in research, primarily 

because of its ability to provide speedily and thorough 

outcomes on past, current, and future presence of a specified 

species (da Silva Galdino et al., 2016). At least two studies 

have used Maxent to estimate the probable dispersal of many 

species (De Meyer et al., 2010; Solhjouy-Fard et al., 2013). 

The potential MSD distributions were predicted to change as 

a direct result of future climate change scenarios (da Silva 

Galdino et al., 2016). This study projected the probable 

dissemination of C. fimbriata and explored the potential 

geographic distribution of MSD with various future climatic 

scenarios.  In this paper, the probable spread of C. fimbriata 

is centered on bioclimate variables, with seven leading 

variables (bio1, bio2, bio13, bio14, bio15, bio19, and 

elevation) instead of focusing on the other abiotic factors, 

such as soil and water-type influences and the type of mango 

tree cultivar (Al-Adawi et al., 2003). Climatic factors are the 

most crucial elements that contribute to the regeneration and 

spread of MSD (da Silva Galdino et al., 2016). 

 

 
 

Figure 5. The Standard deviation maps of the species 

distribution in Maxent for climatic projections (a) 2021-2040 

(b) 2041-2060 (c) 2061-2080 (d) 2081-2100. 

 
The model outcomes showed that the highly suitable 

areas for C. fimbriata potentially increased by 3.31% in 

2081–2100, covering an area of about 2234 km2. da Silva 

Galdino et al. (2016) explained the potential effects of global 

warming on MSD distributions through expansions and 

shifts in the species’ range. This paper showed that under the 

projected future climatic scenarios, the distribution for 

C. fimbriata would expand under all projections in 2041–

2060, 2061–2080, and 2081–2100 periods, proving that 

more areas would exist for MSD invasion. The change was 

more obvious for the period 2081–2100 than for 2061–2080, 

and the outcomes predicted by this study were consistent 

with those of other studies showing the consequences of 

habitat change under the effects of future climate change 

(Biber-Freudenberger et al., 2016). Even so, under different 
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climatic scenarios, the results did not show the same trend, 

which might be due to the variation in humidity and 

temperature that influence C. fimbriata spread. In addition, 

averaging the bioclimatic variables might also have 

contributed to the uncertainty by creating overlapping 

results.  

  As this study provided a spatial mapping for the 

possible disease distribution in northern Oman, techniques 

such as integrated approaches or strategies such as the 

development of hybrid species could abate the spread and 

also provide an increased resistance to C fimbriata. Other 

approaches could be, for instance, incorporating pest 

management policies could help in managing the disease 

invasion (Al-Adawi et al., 2003). The important maps 

produced in this study are indicators of the possible 

establishment of MSD disease and potential areas that are at 

risk of its invasion. Therefore, the result of this study can be 

used by decision-makers in preventing the establishment of 

this disease in the agricultural corridor of Oman. The best 

defense mechanism is improvement in agricultural policy 

and governance in crop production and soil management. 

Moreover, the agricultural land in Oman is composed of 

mixtures of various crops; as a result, the current spatial 

distribution of Mango as a specific crop is not mapped or 

known. However, with Oman being an arid country, the 

suitable areas for crop production are known which is usually 

along the lowland of the coastal area. This study will help the 

farmers to identify the suitable area for mango production 

and the vulnerable area for disease distribution in current and 

future climate change scenarios. Since most of Oman's land 

is not suitable for agricultural practices this type of study is 

important as it help the farmers and the decision-makers to 

conserve the suitable agricultural land and to protect their 

agricultural crops from diseases and from other possible 

reasons of converting this land to urban land use. 

Furthermore, one of the challenges in this study was the lack 

of spatial data on the MSD distribution. However, this study 

will help in identifying possible sites that could help the 

decision-makers in mapping and quantifying the potential 

vulnerable sites and farms. 

In conclusion, even though this study indicated 

possible changes in environmental and climatic conditions, 

it did not provide definitive predictions. It was important to 

evaluate the effects of the global climate change scenario on 

the potential distribution of MSD diseases, because by doing 

so it provided a helpful understanding of the relationship 

between the prevalence of MSD and the corresponding 

environmental variables. This study, therefore, helps to 

identify areas of potential MSD distribution and to establish 

operational strategies for managing and inhibiting the future 

distribution of the disease.  

This study was one of the first in providing future 

projections of C. fimbriata in northern Oman. The MaxEnt 

model was trained with a previous period (1970-2000) and 

then projected to future climate periods (2021-2040, 2041–

2060, 2061–2080, 2081–2100). The results showed Maxent 

provided a good representation of MSD pattern and 

distribution by using data from 15 affected locations and 7 

bioclimatic variables in predicting the consequence of 

climate change on the mango trees. The following 

conclusions are drawn: 

i. Between the period 2081 and 2100, the extent of 

extremely suitable category for C. fimbriata would 

increase by 5% under the projection of climate change for 

that period. 

ii. Climate change consequences on the probable spread of 

MSD must therefore be considered, primarily to estimate 

the loss of mango production and to prevent the potential 

establishment of MSD, as the area of suitable habitat will 

increase 5% by 2100. 

iii. This study found that the following bioclimatic variables 

such as biol (Mean Annual Temperature), and bio2 

(Mean Diurnal Range (Mean of monthly (max temp - min 

temp) and bio14 (Precipitation of Driest Month) 

contribute significantly to the possible distribution of 

MSD in northern Oman. The change in future climatic 

scenarios will foster an outbreak in mango tree diseases. 

Therefore, strategic planning such as defining vulnerable 

areas for the protection of mango and conservation 

initiatives (which can help in minimizing the impacts) 

should be considered for mango planting farms.  

 

The results of this study would be of immense benefit 

to decision-makers from the local to national levels, where 

informed best management practices would be made for 

sustainable mango production in Oman under a changing 

climate.  
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 الملخص 
تحت     Ceratocystis fimbriataالمفاجىء للمانجو المتسبب عن الفطر  موت تخمين حدوث ال   . 2021  . الصبحي   الرحيلي، آمنة، ألابا بولوواده وعلي 

 AJPPps://doi.org/10.22268/htt-2152233.903.. 223-215(: 3)39  ظروف التغير المناخي. مجلة وقاية النبات العربية، 
أشجار هدد  ت  التي  الأمراض الرئيسية  من(   (MSDمرض الموت المفاجئ  ديع.  العاليةقتصادية  والا تعتبر أشجار المانجو من المحاصيل المهمة لقيمتها الغذائية  

العالم أنحاء  وجميع  عمان  في  الدراسة  هدفت    . المانجو  التيإلى  هذه  عمان  شمال  في  المناطق  فطر   ينتشر  تحديد   سبب  الم  Ceratocystis fimbriata   فيها 
م توقع                بناء  عليها تو   2000-1970على بيانات الفترة    واعتمد    MaxEntنموذج    في هذه الدراسة . استخدم يتكيف وينتشر في ظل التغير المناخيالذي   – MSDمرض  ل

المستقبل في  المناخ  فترات  في  لفطر  .  التغيرات  المستقبلي  التوزيع  الدراسة  هذه  التالية:    C. fimbriataصممت  الفترات  في  المناخية   ، 2040-2021للسيناريوهات 
  . أظهر استخدام ستخدام سبعة متغيرات مناخية حيويةا                         موقعا  متأثرا  بالمرض و   في هذه الدراسة تضمين خمسة عشر  . تم2100-2081، و2061-2080،  2060- 2041

https://doi.org/10.22268/AJPP-039.3.215223
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ي لدرجة الحرارة  النهار  المدىأن متوسط    jackknifeأظهر اختبار    . للنتائج         جيدا                                     )ملاءمة الموائل( مما يمثل نموذجا    0.913و    0.896تتراوح بين               مذجة قيما  النختبارات ا
، تم العثور على مساحة إجمالية  2040حتى عام    2021  العام   من  . C. fimbriata  العامل الممرض  إنتشار   زيادة                           في أكثر الشهور جفافا  في  سيسهم    وهطل الأمطار

  2060-2041ملائمة في الفترات  الفي شمال سلطنة عمان، وستزيد مساحات المناطق غير    C. fimbriata فطر  نتشار  انو                          كم مربع ملائمة جدا  لنمو    1889قدرها  
دراستها،    ت في ظل جميع السيناريوهات التي تم  C. fimbriataفطر  نتشار  لا بشكل معتدل    لائمة المناطق الم. كما ستنخفض  2040-2021مقارنة بفترة    2100- 2081و

نتائج هذه البحث في إدارة ومنع مرض الموت المفاجئ  . ستساعد  2060-2041إلا أن المساحة الإجمالية للمناطق الملائمة مع جميع السيناريوهات ستزداد ما عدا الفترة  
وخنفساء اللحاء     C. fimbriata  أفضل من خلال السيناريوهات المناخية المتوقعة في المستقبل مما سيساعد في السيطرة على فطر( بشكل   (MSDلأشجار المانجو  

 (Hypocryphalus mangiferae  ) المرض.  اهذنتشار  ا لهما الدور الرئيس في  باعتبار أن 

 . MaxEntنموذج  التغيرات المناخية، سلطة عمان،مناخية الحيوية، لاالمتغيرات ، Ceratocystis fimbriataكلمات مفتاحية: الموت المفاجئ للمانجو، 
( قسم علوم النبات، كلية الزراعة والعلوم البحرية، جامعة السلطان قابوس، مسقط، عمان،  1).  4،1وعلي الصبحي  3،2، ألابا بولوواده1الرحيليآمنة   ين: عناوين الباحث 

قسم التربة والمياه والهندسة الزراعية، كلية الزراعة والعلوم البحرية، جامعة السلطان قابوس،    (2؛ )alruheli@squ.edu.omالبريد الإلكتروني:  

( )( معهد لازارديس لإدارة الأ3مسقط، عمان؛  النباتية  4عمال والإقتصاد، جامعة ويلفريد لورييه، واترلو، كندا؛  الوراثية  للموارد  ( مركز عمان 
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