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Abstract

Al-Ruheili, A.M., A. Boluwade and A.M. Al-Subhi. 2021. Predicting Mango Sudden Decline Due to Ceratocystis fimbriata
Under a Changing Climate. Arab Journal of Plant Protection, 39(3): 215-223. https://doi.org/10.22268/AJPP-039.3.215223

Mango fruit trees are an important fruit crop due to their high value. Mango sudden decline (MSD) is a major disease that threatens
mango trees in Oman and worldwide. The objective of this study was to identify those areas in northern Oman in which Ceratocystis fimbriata
(a plant fungal pathogen causing MSD) may establish itself under various climate change scenarios. The MaxEnt model used in this study was
based on data for the period 1970-2000 and then projected to future climate periods. This study modeled the future distribution of C. fimbriata
for 2021-2040, 2041-2060, 20612080, and 2081-2100 climatic scenarios. Fifteen affected locations and seven bioclimatic variables were
investigated in this study. The model showed values between 0.896 and 0.913 (habitat suitability) which represented a good model outcome.
The jackknife test showed that the mean diurnal range in temperature, precipitation of the driest month, and elevation contributed to C. fimbriata
distribution. From 2021 through 2040, a total area of 1,889 km? was found to be highly suitable for C. fimbriata in Northern Oman. Compared
with the 2021-2040 period, the poorly suitable area would increase in both 2041-2060 and 2081-2100 periods. The moderately suitable
regions for C. fimbriata would decrease under all scenarios investigated. However, the total area of the suitable areas, with all scenarios, would
increase, except during the 2041-2060 period. This research offers a tool to better manage and prevent the possible Ceratocystis blight (C.
fimbriata) and bark beetle (Hypocryphalus mangiferae) invasions under future projected climatic scenarios.
Keywords: Mango sudden decline (MSD), “Ceratocystis fimbriata”, bioclimatic variables, climate change, Sultanate of Oman, Maxent.

Introduction

The agricultural sector is an important component of the
global economy. For instance, 65% of jobs and earnings in
Africa are agriculturally based (Pretty et al., 2011).
Therefore, the loss of agricultural production resulting from
pests and diseases is a major concern for every farmer and
any agriculture-based economy. According to Godfray et al.
(2010), the sustainability of the agricultural yield relies on
the continuous management of pests and diseases to ensure
profitable productivity. The mango tree (Mangifera indica)
is grown in many continents, including Asia, South America,
and Africa, and has high economic value (Arauz, 2000).
Mangoes are also one of the most significant perennial fruit
crops in the Sultanate of Oman (hereafter: Oman). In 2004,
in the Al Batinah agricultural region, orchards planted with
mango reached around 2500 ha, with total fruit production
estimated at 8600 t (Al-Adawi et al., 2006).

However, in 1999, mango sudden decline (hereafter:
MSD) appeared in Oman. Following the onset of this
disease, more than 60% of mango trees were affected in
northern Oman in the Al Batinah region (Al-Subhi et al.,
2006). MSD resulted in the loss of over 200,000 mango trees,
which represented 13% of all the mango trees in the region
(Al-Adawi et al., 2006). MSD is a fungal disease that attacks
the mango tree’s vascular system and results in a quick

https://doi.org/10.22268/AJPP-039.3.215223
© 2021 Arab Society for Plant Protection <Ll 438 51 44 jall dnasll

215 Arab J. Pl Prot. Vol. 39, No. 3 (2021)

decline or sudden death. The disease becomes a serious
threat to mango trees throughout the entire region. The major
symptoms of MSD are trunk secretion and wilting and the
browning of leaves on single branches. In one study, most of
the affected trees died six months after symptoms appeared
(Pereira et al., 2019). Different fungi have been reported to
be associated with MSD. Pathogens such as Ceratocystis
blight (Ceratocystis fimbriata, C. manginecans, C.
omanensis, and Lasiodiplodia theobromae) are the fungi
isolated from MSD mango trees and were most commonly
found in Oman and Pakistan. The bark beetle
(Hypocryphalus mangiferae) is the vector responsible for
spreading the pathogens among mango trees (Al-Adawi et
al., 2003). According to Al-Adawi et al. (2006), H.
mangiferae played a significant role in the dispersal of the
mango sudden decline pathogen. Many countries around the
world, including Iran, Australia, Egypt, India, the USA,
Brazil, and Korea, have associated MSD with the fungal
pathogen Ceratocystis sp., resulting in the wilting and death
of their mango trees (Saeed et al., 2017). Many other
countries around the world reported similar effects of MSD.
For example, Pakistan considered MSD as the most
destructive disease for mango trees, and 10-28% of mango
trees were reported in Punjab to be affected by the disease,
resulting in heavy economic losses for mango producers
(Hassan & Nazami, 2017).
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The climatic variation appears to play a significant role
in the distribution of both pests and diseases around the
world. According to Rosenzweig et al. (2010), climate
change has a huge impact on agricultural crops and insect
populations in both natural ecosystems and agroecosystems.
Some studies have assessed the impact of climate change on
bioclimatic conditions and their role in increasing the
geographical distribution of pests and diseases. For example,
Biber-Freudenberger et al. (2016), conducted a study to
model the pest distribution for tomato leafminer (Tuta
absoluta), mango fruit fly (Ceratitis cosyra), and oriental
fruit fly (Bactrocera) to estimate the extent and change of
pest habitats across Africa under various future climate
change scenarios. The authors concluded that there is slightly
increasing habitat suitability for the three pests on the entire
African continent. Climatic conditions also contribute to the
distribution of the H. mangiferae (Rossetto & Ribeiro, 1990).
H. mangiferae is the vector for MSD infection. The mango
bark beetles have the capability to spread the fungal
structures over long distances and may infect other parts of
the plant and remain in the soil, which can result in the loss
of an entire mango planted area. Once the mango trees show
symptoms, then the beetle serves as a proxy for disease
spread. There is no information available on the spatial
distribution of mango in Oman. Therefore, this study
provided a proxy of possible suitable habitat for mango and
the disease as well. In other words, understanding these
environmental factors is crucial for forecasting the disease
distribution and its patterns in efforts to develop informed
management practices. Various climate change scenarios
and models are available for different anthropogenic CO-
emission forecasts, and these help researchers generate
projections for the distribution of certain diseases in
anticipation of possible future outbreaks (Collins et al.,
2013).  Several species distribution studies have been
conducted to model pest and disease habitat suitability under
future climate change scenarios. For instance, the potential
distribution of pests and diseases in Asia, North America,
and several European countries has already been modeled
(De Meyer et al., 2010; Solhjouy-Fard et al., 2013).
However, fewer modeling approaches have been constructed
for disease projection with a focus on Oman (da Silva
Galdino et al., 2016). There is, therefore, a need to assess
the impact of climate change on pest and disease distribution
in order to estimate the potential losses of agricultural
products. Currently, the methods to control MSD involve
using grafting methods in which an exotic scion is grafted on
a local plant rootstock. This is because MSD (through H.
mangiferae) is found more on local varieties than on the
exotic grafted varieties (Al-Adawi et al., 2006). Because
MSD issues in Oman have not yet been resolved and climate
change is a fact, the impact of climate change on this mango
disease needs to be assessed. This study aimed to project
various climate change scenarios in the context of MSD
disease and to assess the disease’s future distribution and
patterns to help decision-makers develop informed
management practices and assist in planning the further
expansion of agricultural species and potential associated
risks that may arise.

This study used maximum entropy species distribution
modeling (Maxent), which is based on correlative ecological

niche models between species occurrences and
environmental variables to generate maps of potential
species distribution by fitting a probability distribution for
species occurrence in a geographic area. The niche-based
model is used to describe the ecological suitability of a space
and to generate a geographic area of the predicted presence
of the species that satisfies the fundamental niche conditions
necessary for those species and their potential distribution
(Phillips et al., 2006). Several studies have demonstrated the
use of this model in predicting pest and disease distribution.
For example, given future climate conditions scenarios, the
forest in the interior of the western US is predicted to see a
27% increase by 2050 of the mountain pine beetle
(Evangelista et al., 2011). As climate change occurs, there is
a need to predict the potential MSD distribution under
different climate change scenarios in order to better select
appropriate growing areas for future mango cultivation and
production. Therefore, the primary objective of this study is
to analyze the potential suitable areas for the establishment
of C. fimbriata in northern Oman.

Materials and Methods

Study area

Oman (Figure 1) is an arid country in the Arabian Peninsula
with a population of almost 5 million as of 2019 (World
Bank, 2020). The total land area is more than 309,500 km?
(McDonnell, 2016). The country can be divided into three
main land surface areas: coastal plains, deserts, and
mountains (McDonnell, 2016). With 11 different
administrative governorates (Figure 1), the country’s main
agricultural area is located in the Al-Batinah, Musandam
Peninsula, interior oases, high plateaus of the eastern region,
and Dhofar region (Al-Adawi et al., 2003). According to Al-
Adawi et al. (2003), the climate is generally hot and humid
and hot & dry in the coastal areas and hot and dry in the
interior areas. According to McDonnell (2016), the average
annual precipitation for the entire country, interior and
mountainous & coastal areas is around 100 mm, 20 mm, and
400 mm, for the three regions, respectively. This rain occurs
during the winter months (November—April) in the north and
interior regions of Oman, whereas there is a monsoon
summer season (June-September) experienced in the
southern (Dhofar) region of Oman (Al-Adawi et al., 2003).
The average temperature in the northern, interior, and
Salalah plain is in the range 20-28°C, 19-26°C and 20-27°C,
in the three regions, respectively (MRMWR, 2008).
Evaporation in the interior, Al-Batinah coast, and Salalah
plain is estimated to be 3000 mm, 2100 mm, and 1700 mm,
respectively (MRMWR, 2008). Due to the vast area of land
dominated by mountains, the total area under agricultural
production is limited. As of 2004, the cultivated land area
was around 58,800 ha with annual and perennial crops
around 12,700 ha and 46,000 ha, respectively (Al-Adawi et
al., 2003). According to the Ministry of Agriculture and
Fisheries (2014), approximately 7% of the total land area in
Oman has soil that can support agriculture. Oman’s cropping
system is mainly fruit trees including date palms, forage (i.e.
alfalfa & Rhodes grass), and vegetable crops, which
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constitute 45%, 30%, and 17% of the cultivated area,
respectively.

Pest species and presence records

The disease incidence data caused by C. fimbriata was
obtained from the literature (da Silva Galdino et al., 2016)
related to a total of 15 unique affected locations in the
northern part of Oman (Figure 1). The strength of Maxent is
its ability to make predictions with small sample size as
reported in the literature (Anderson & Gonzalez, 2011). The
collected data points represent the locations of the mango
trees (Figure 1) infected with MSD that showed symptoms,
including branch death, wilting leaves, and bark
discoloration (da Silva Galdino et al., 2016). The black
outlined area shown in the right panel of Figure 1, is the area
used for this study.
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Figure 1. Sultanate of Oman map showing the mango
sudden decline (MSD) locations reported by da Silva
Galdino et al. (2016). The black outlined polygon shown to
the top right represents the study area.

Environmental variables

To determine the future distribution of MSD under different
climate scenarios, the study used datasets of future climate
from the WorldClim data portal
(https://lwww.worldclim.org/data/index.html). The future
bioclimatic data were obtained from WorldClim v2.1, which
was downscaled using CMIP6 at 2.5 minutes (4.5 km) spatial
resolution. The climatic data was subject to nine Global
Climate Models (GCMs) and four Shared Socio-Economic
Pathways (SSP6-8.5) for the following periods: 1970-2000
(current & training period), 2021-2040, 2041-2060, 2061—
2080, and 2081-2100 and were available in a Geotif raster
format (Eyring et al., 2016). This paper used ssp585 and the
climate conditions that were represented by 19 bioclimatic
variables. The 19 bioclimatic variables were extracted from
the Geotif using statistical software. After the 19 bioclimatic
variables for the eight models (not shown) were extracted,
the average of each bioclimatic variable was calculated and
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used as an input for the model. The environmental variables
derived from the WorldClim repository have been widely
used in the prediction of the potential distribution of species
as they are influenced by the changes in temperature and
precipitation. As a result, these variables contribute to the
ecology of species, which helps in explaining the predicted
future distribution of species resulting from climate change
(Zhang et al., 2016).

This study considered the use of 20 environmental
variables. Eleven of these variables were derived from the
monthly temperature, while eight were derived from the
monthly precipitation and digital elevation model. The
decision to include seven bioclimatic variables in this study
was based on the earlier study conducted by da Silva Galdino
et al. (2016) to model the distribution of MSD in Oman. For
the current disease distribution (training datasets),
bioclimatic variables in the WorldClim database (version
1.4) included the information of 19 bioclimatic variables
from 1970 until 2000. The highly correlated variables were
removed at 0.8 and seven climatic variables were relevant to
MSD distribution (Table 1). Accordingly, for the periods
2021-2040, 2041-2060, 2061-2080, and 2081-2100, this
study incorporated these seven bioclimatic variables: mean
annual temperature (biol; °C); precipitation of the coldest
quarter (biol9; mm); seasonal precipitation (CV) (biol5);
precipitation of the driest month (bio14; mm); elevation (m);
precipitation of the wettest month (biol3; mm); and mean
diurnal range in temperature (bio2; °C). However, biol5 and
biol3 appear to make a nonexistent to minimum contribution
regarding the future distribution of MSD.

Model and analyses
This study used Maxent v.3.3., which was obtained from the
web portal of Princeton University at
http://www.cs.princeton.edu/. The software can forecast the
extent and map the possible species distribution based on
maximum entropy or environmental variables. The model
uses climatologic variables in combination with species’
locations to predict the species’ capability of establishing
itself in new areas. Maxent has the capability in producing
various suitability indices ranging between 0 for unsuitable
areas and 1 for highly suitable areas. Maxent yields in two
assessment models: the area under the receiving operating
characteristic (ROC) curve (AUC) and jackknife testing 17].
This study utilized Maxent to forecast the future distribution
of MSD because of Maxent’s ability to work with records of
few locations at the same time (Pearson et al., 2007).
Maxent uses AUC in assessing the model’s
performance, which is considered an excellent index
indicator for the model’s performance. At the same time, the
ROC is used to assess the AUC model’s performance
through thresholding (Prabhulinga, 2017). The assessment of
the AUC model’s performance employs five categories: not
suitable (0.5-0.6), low suitability (0.6-0.7), moderate
suitability (0.7-0.8), suitabile (0.8-0.9), highly suitable (0.9-
1) (Swets, 1988). The AUC values closer to 1, represent the
good performance of the model. Therefore, low values of
AUC are considered unreliable and vice versa.



Table 1. Environmental variables considered for the C. fimbriata Niche model and the average percent contribution of
environmental variables in the mango sudden decline best Maxent model.

Period 1970-2000 2021-2040 2041-2060 2061-2080 2081-2100
Scenarios % % % %
Variables Cont* PI* Cont. PI Cont. PI Cont. PI Cont. PI
Mean annual temperature 0.5 74 14.7 2 26.7 2.2 37.8 4.3 51.7
(biol; °C)

Precipitation of coldest quarter 5.2 21.7 1.3 13.1 1.1 0.1 0.2 0.2 0.1
(bio19; mm)

Precipitation seasonality (CV) 0.1 - - - - - - - -
(biol5)

Precipitation of driest month 36.7 13.6 314 156 32 356 375 388 375 325
(biol4; mm)

Elevation 4.2 6.9 15.1 8.4 4.6 7.1 7.1 9.4 9.3 12.5
(m)

Precipitation of wettest month 0.1 0.1 - 0.3 15 0.1 - 0.3 -
(biol3; mm)

Mean diurnal range in temperature 53.3 44.3 59.9 48 14.4 53 13.7 485 3.1
(bio2; °C)

* 0% Cont.= % Contribution; PI= Permutation importance

The jackknife test is used to assess the leading
bioclimatic variables and map the possible distribution of C.
fimbriata. The jackknife test is built-in to the software used
to calculate the habitat suitability curves of each variable; it
is also used to assess each climatic variable’s contributions
to the habitat model (Li et al., 2016). More information on
this model’s modeling approach can be found in Philips and
Dudik (2008).

Evaluation of the model performance
Because the data was limited, this study used cross-
validation for 15 replications with a threshold at 10
percentile training presence (Shcheglovitova & Anderson,
2013). The following parameters such as auto-features and
regularization multiplier used the default settings. The
default parameter settings were used because they are
effective and are suitable for a wide-range of species
occurring data sets. 15 replicated runs were used to get the
output of the average logistic. The output of the replication
is used to estimate the likelihood of the presences indices per
category between 0 (not likely to occur) and 1 (most likely
to occur) (Phillips et al., 2006; Phillips & Dudik, 2008).
AUC was used to estimate the goodness of fit under the
ROC curve, where the highest value indicated the best
performer. The jackknife, the percentage contribution, and
the permutation importance were used to estimate the most
important environmental variables governing MSD
distribution. Response curves were generated in Maxent and
were used to indicate the relationships between predicted
probabilities of the presence of the disease with respect to the
variations within each environmental variable.

Results

Bioclimatic variables contribution and Maxent
performance

C. fimbriata forecasting during the 2021-2040 climatic
scenario was found to be AUC mean = 0.913. The outcomes
of the model presented that some of the designated seven
bioclimatic variables of C. fimbriata showed the distribution
of MSD for the period 2021-2040 very well. Among the
seven bioclimatic variables, three contributed significantly to
the disease occurrence such as bio2 with 52% contribution,
biol4 with 31.4% contribution, and elevation with 15.1%
contribution. In contrast, the distribution of the bioclimatic
variable of C. fimbriata for the period 2041-2060 was for
bio2 with 48% contribution, biol4 with 32% contribution,
and elevation with 4.6% contribution. The bioclimatic
variables’ distribution of C. fimbriata for the period 2061—
2080 were for bio2 with 53% contribution, biol14 with 37.5%
contribution, and elevation with 7.1% contribution. For the
period 2081-2100, the bioclimatic variables’ contribution to
MSD distribution were for bio2 with 48.5% contribution,
biol4 with 37.5% contribution, in addition to elevation with
9.3% contribution (Table 1).

The jackknife test for the period 2021-2040 showed
that bio2, biol3, biol4, and elevation were the main
variables (Figure 2), and in terms of permutation the main
variables were bio2 with 59.9%, biol4 at 15.6%, and
elevation at 8.4% contribution. These figures demonstrate
that temperature and precipitation play a significant role in
forecasting the possible dispersal of C. fimbriata. Based on
the species response curves acquired, C. fimbriata prefers a
mean diurnal range in temperature, limited precipitation, and
moderate elevation.
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Figure 2. Jackknife test of environmental variable importance for C. fimbriata. Y-axis represent the seven environmental
variables in ASCII raster format (biol = Annual Mean Temperature; bio2 = Mean Diurnal Range (Mean of monthly (max temp
- min temp)); biol3 = Precipitation of Wettest Month; biol4 = Precipitation of Driest Month; biol5 = Precipitation Seasonality
(Coefficient of Variation); biol9 = Precipitation of Coldest Quarter).

The mean AUC values showed in Table 2 for C.
fimbriata in the future periods (2041-2060, 2061-2018, and
2081-2100) performed well, indicating trustworthy
predictability, and the AUC values of 0.913, 0.896, and
0.907, respectively, were considered high. The model
outcome shows that the simulations can be used to analyze
the impact of climate change on the distribution of C.
fimbriata in Oman.

Table 2. AUC values when modeling C. fimbriata
distribution of various climate change scenarios for three
future periods (2041-2060, 2061-2080, and 2081-2100; 15
replicated runs).

Period AUC mean AUC SD mean
2041-2060 0.913 0.023
2061-2080 0.896 0.002
2081-2100 0.907 0.021

Predicted current potential distribution

Using ArcGIS 10.8, the map in Figure 3 shows the potential
MSD spreading projection for C.fimbriata based on
observed occurrences and the environmental variables
projected by the Maxent model for 2021-2040.

The coastal area in northern Oman showed high
suitability for C. fimbriata disease distribution. The total area
of suitable locations (including less suitable habitat,
moderately suitable area, and highly suitable area) was
64,393 km?2. The highly suitable areas for C. fimbriata were
primarily located along the coast in northern Oman with a
presence probability > 0.6, which was only 5% of the total
area for the training & histrorical period 1970-2000 (Figure
3).
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Future climatic distribution scenarios

The estimated future climate change distributions for
C. fimbriata with various climate change projections for the
periods of 2021-2040, 2041-2060, 2061-2080, and 2081—
2100 are presented in Figure 4. The results showed that there
was an increase of 5% between the total number of suitable
habitats in 2021-2040 and those predicted for 2081-2100
(Figure 4). Compared with the 2021-2040 distribution, the
total area of the moderately suitable regions for C. fimbriata
under the three climatic scenarios for the periods 2021-2040,
2041-2060, 20612080, and 2081-2100 would increase by
1.44%, 0.52%, and 0.33% respectively. In contrast, the total
area of the highly suitable habitats would increase by 1.7%,
4.5%, 4.41%, and 5% respectively (Table 3). Under the
scenarios for 2021-2040, 20412060, 2061-2080, and 2081
2100, the areas of the less suitable regions would decrease
by -1.97%, -5.95%, -4.93, and -3.09%, respectively, and the
areas of the unsuitable regions would decrease by 16%
(Table 3).
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Figure 3. Suitable climatic distribution of C. fimbriata in
north Oman for the historical period 1970-2000. The MaxEnt
model was trained with this historical period. The blue color
(0.0-0.2) and red color (0.8-1.0) show the least and most
suitable locations for C. fimbriata, respectively.



Table 3. Predicted suitable areas for C. fimbriata in future Climatic Conditions

Scenarios Rate increase/decrease (%) compared to
Predicted area (km?) 2020-2040

Period UH*  PSH MSH SH HSH UH PSH  MSH SH HSH

1970-2000 (Historical & Training) 57822 1507 1850 1081 2133

2021-2040 7916 287 172 175 167 -1% -095% 0.89% -0.33% 1.40%

2041-2060 2422 49 36 12 0 -6.35%  0.40% 1.44% 1.20% 3.3

2061-2080 2458 57 61 15 0 -5.07% 0.14% 052% 1.10% 3.31%

2081-2100 2426 80 66 19 0 -3.84%  -0.75% 0.33 0.95% 3.31%

* UH= Unsuitable habitat (0-0.25), PSH= Poorly suitable habitat (0.25-0.40), MSH= Moderately suitable habitat (0.41-0.60), SH= Suitable

habitat (0.61-0.80), HSH= Highly suitable habitat (0.81-1.0).

Figure 5 shows the standard deviation (SD) associated
with the climatic projections. The SD values quantify the
uncertainty of the predictions from the models. It is clear
from these figures that predictions of climate projections
(farther into the future 2061-2080 and 2081-2100) have more
slightly variability (high SD) in habitat suitability when
compared with the immediate climatic projection periods
(2021-2040 & 2041-2060).
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Figure 4. Potentially suitable climatic distribution of C.
fimbriata under different climate change scenarios in north
Oman for the future periods (a) 2021-2040 (b) 2041-2060,
(c) 2061-2080, and (d) 2081-2100. The blue color (0.0-0.2)
and red color (0.8-1.0) show the least and most suitable
locations for C. fimbriata, respectively.

Discussion

This paper is considered as one of the pioneers in
investigating C. fimbriata distribution in relation to climate
change consequences in northern Oman using Maxent
modeling. Maxent is widely used in research, primarily
because of its ability to provide speedily and thorough
outcomes on past, current, and future presence of a specified
species (da Silva Galdino et al., 2016). At least two studies
have used Maxent to estimate the probable dispersal of many
species (De Meyer et al., 2010; Solhjouy-Fard et al., 2013).
The potential MSD distributions were predicted to change as
a direct result of future climate change scenarios (da Silva
Galdino et al., 2016). This study projected the probable

dissemination of C. fimbriata and explored the potential
geographic distribution of MSD with various future climatic
scenarios. In this paper, the probable spread of C. fimbriata
is centered on bioclimate variables, with seven leading
variables (biol, bio2, biol3, biol4, biolb, biol9, and
elevation) instead of focusing on the other abiotic factors,
such as soil and water-type influences and the type of mango
tree cultivar (Al-Adawi et al., 2003). Climatic factors are the
most crucial elements that contribute to the regeneration and
spread of MSD (da Silva Galdino et al., 2016).
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Figure 5. The Standard deviation maps of the species
distribution in Maxent for climatic projections (a) 2021-2040
(b) 2041-2060 (c) 2061-2080 (d) 2081-2100.

The model outcomes showed that the highly suitable
areas for C.fimbriata potentially increased by 3.31% in
2081-2100, covering an area of about 2234 km?2. da Silva
Galdino et al. (2016) explained the potential effects of global
warming on MSD distributions through expansions and
shifts in the species’ range. This paper showed that under the
projected future climatic scenarios, the distribution for
C. fimbriata would expand under all projections in 2041-
2060, 2061-2080, and 2081-2100 periods, proving that
more areas would exist for MSD invasion. The change was
more obvious for the period 2081-2100 than for 20612080,
and the outcomes predicted by this study were consistent
with those of other studies showing the consequences of
habitat change under the effects of future climate change
(Biber-Freudenberger et al., 2016). Even so, under different
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climatic scenarios, the results did not show the same trend,
which might be due to the variation in humidity and
temperature that influence C. fimbriata spread. In addition,
averaging the bioclimatic variables might also have
contributed to the uncertainty by creating overlapping
results.

As this study provided a spatial mapping for the
possible disease distribution in northern Oman, techniques
such as integrated approaches or strategies such as the
development of hybrid species could abate the spread and
also provide an increased resistance to C fimbriata. Other
approaches could be, for instance, incorporating pest
management policies could help in managing the disease
invasion (Al-Adawi et al., 2003). The important maps
produced in this study are indicators of the possible
establishment of MSD disease and potential areas that are at
risk of its invasion. Therefore, the result of this study can be
used by decision-makers in preventing the establishment of
this disease in the agricultural corridor of Oman. The best
defense mechanism is improvement in agricultural policy
and governance in crop production and soil management.
Moreover, the agricultural land in Oman is composed of
mixtures of various crops; as a result, the current spatial
distribution of Mango as a specific crop is not mapped or
known. However, with Oman being an arid country, the
suitable areas for crop production are known which is usually
along the lowland of the coastal area. This study will help the
farmers to identify the suitable area for mango production
and the vulnerable area for disease distribution in current and
future climate change scenarios. Since most of Oman's land
is not suitable for agricultural practices this type of study is
important as it help the farmers and the decision-makers to
conserve the suitable agricultural land and to protect their
agricultural crops from diseases and from other possible
reasons of converting this land to urban land use.
Furthermore, one of the challenges in this study was the lack
of spatial data on the MSD distribution. However, this study
will help in identifying possible sites that could help the
decision-makers in mapping and quantifying the potential
vulnerable sites and farms.

In conclusion, even though this study indicated
possible changes in environmental and climatic conditions,
it did not provide definitive predictions. It was important to
evaluate the effects of the global climate change scenario on
the potential distribution of MSD diseases, because by doing
so it provided a helpful understanding of the relationship
between the prevalence of MSD and the corresponding

environmental variables. This study, therefore, helps to

identify areas of potential MSD distribution and to establish

operational strategies for managing and inhibiting the future
distribution of the disease.

This study was one of the first in providing future
projections of C. fimbriata in northern Oman. The MaxEnt
model was trained with a previous period (1970-2000) and
then projected to future climate periods (2021-2040, 2041
2060, 2061-2080, 2081-2100). The results showed Maxent
provided a good representation of MSD pattern and
distribution by using data from 15 affected locations and 7
bioclimatic variables in predicting the consequence of
climate change on the mango trees. The following
conclusions are drawn:

i. Between the period 2081 and 2100, the extent of
extremely suitable category for C.fimbriata would
increase by 5% under the projection of climate change for
that period.

ii. Climate change consequences on the probable spread of
MSD must therefore be considered, primarily to estimate
the loss of mango production and to prevent the potential
establishment of MSD, as the area of suitable habitat will
increase 5% by 2100.

iii. This study found that the following bioclimatic variables
such as biol (Mean Annual Temperature), and bio2
(Mean Diurnal Range (Mean of monthly (max temp - min
temp) and biol4 (Precipitation of Driest Month)
contribute significantly to the possible distribution of
MSD in northern Oman. The change in future climatic
scenarios will foster an outbreak in mango tree diseases.
Therefore, strategic planning such as defining vulnerable
areas for the protection of mango and conservation
initiatives (which can help in minimizing the impacts)
should be considered for mango planting farms.

The results of this study would be of immense benefit
to decision-makers from the local to national levels, where
informed best management practices would be made for
sustainable mango production in Oman under a changing
climate.
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